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The presence of disorder in frustrated spin system offers conflict in the spin ordering. The hopping
electron develops a different kind of Berry connection in the frustrated spin system. The Quantum
Hall state for the lowest Landau level at ν = 1 is highly frustrated. They are the singlet states
identified as the Hall qubit, the building block of other higher IQHE/FQHE states at different filling
factors. In this paper we have studied the Physics behind the Hall qubit formed by entanglement of
two qubits where one qubit is rotating in the field of the other with Berry phase or Aharonov-Bohm
phase. With the condition of concurrence for maximum entanglement, a proper ratio between the
fluxes of the entangling qubits has been evaluated. Interplay between disordered and ordered phase
takes place at particular condition in QHE system.
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I. INTRODUCTION

The theory of quantized hall effect poses a problem as the impurity scattering theory and its re-normalization
group extension suggest that all the state in the band are localized [1]. However, quantized Hall conductivity requires
the existence of at least one extended state per Landau band of two-dimensional electron gas in a sufficiently strong
magnetic field [2,3]. This peculiar situation has been analyzed by Levine,Libby and Pruisken [4] who have suggested
that the extended states with localized band tails are due to topological nontrivial transformations. The ground state
of elementary excitations in the FQHE is quite successful in describing the filling fractions ν = 1/m, with m=odd
integer by Laughlin [2]. An extension of Laughlin’s theory is required to explain the experimentally observed higher
filling fractions of the form p/q. Haldane [5] first gave a deeper insight into these hierarchical states by explaining that
ground state of each level of hierarchy becomes a condensate of elementary excitations of the previous one. These are
quasi-particles obeying fractional statistics. Wilczek [6], considered these quasi-particles as charged particles tied to
flux tubes in two dimensions. Jain gave [7] an alternative approach of hierarchies by mentioning ”FQHE of fermions
are nothing but IQHE of composite fermions.
This characteristic feature of QHE could be realized through quantization process. Quantization plays an important

role to realize the individual Physics behind IQHE and FQHE where latter is observed in extremely clean samples
and impurity is found to be an essential ingredient for pronounced IQHE [8]. The strong magnetic field is responsible
to quantize the Hall particle and to associate topological features acquired through Berry phase [9]. From the view
point of Berry phase and aspect of angular momentum we have build a common origin between IQHE and FQHE [10]
and also studied the quasi-particles in Hierarchies and the shift vectors of FQHE states [11].
The quasi-particles interwind and transport information through long-range quantum correlations by Aharanov-

Bohm interactions in FQHE [12]. The transport of a charge around a flux is equivalent to the Aharanov-Bohm (AB)
phase that is the very cause of quantum entanglement between particles.The quantum gates that convey topological
transformation is known as topological gates. These gates are advantageous for their immunity and resistive power
against local disturbances [13]. This indicates that a quantum mechanical state could carry its memory during
its spatial variation and the influence of Berry phase (BP) on an entangled state could be linked up with the local
observations of spins. It is natural to think that there is an intimate connection between Berry phase and entanglement
when one-qubit rotates in presence of circulating magnetic field around another to form a two qubit under spin echo
method [14]. The essence of quantum entanglement has been found in studying the Hall qubits specially in the lowest
Landau level ν = 1 [15]. This idea of entanglement has been successfully extended [16] for higher filling factors
through preparation and rotation of Hall qubits having A-B interactions.
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The electrons in the Quantum Hall systems are so highly frustrated that the ground state is an extremely entangled
state. Frustration is developed due to interaction between the spins that are in conflict with [17] each other due
to some quenched disorder. This frustration is essential to stabilize the chiral spin states that are quantum liquid
having an energy gap and characterized by the concept of topological order [18]. The local order parameter having
topological stability can be realized through Berry phase in frustrated spin system [19]. In absence of disorder or in
an un-frustrated system the developed Berry phase is an usual solid angle [14]. A different Berry connection [20] will
be acquired by a quantized spinor in the frustrated system. In the next section-II we first reviewed the appearance of
BP and AB phases in QHE. Order and disordered BPs are discussed in section III. After that the above physics of
frustration will be studied respectively in the lowest Landau level of QHE in section IV and for FQHE in section V
with the interplay of ordered and disordered topological phase.

II. TOPOLOGICAL ASPECT OF HALL FLUID AND COMPOSITE FERMION THEORY IN FQHE
THROUGH BERRY PHASE AND AHARONOV-BOHM PHASE

In the Hall fluid the statistical interaction takes the most significant role. Being long ranged it is treated non-
perturbatively. A non-dynamical gauge field Aµ is associated with the flux which in 2+1 dimension is the very cause
of the appearance of Chern-Simon term in the Lagrangian.

LCS =
µ

2
ϵµνλAµ∂νAλ (1)

This licenses a conservation of topological current Jµ which include a topological invariant term in the (2+1) dimension
[21]

H =
θ

2π

∫
d3xAµJ

µ (2)

in the action.In fact it is the Hopf invariant describing basic maps of S3 to S2. If ρ denotes a four dimensional index
then we find [22]

∂ρϵ
ρµνλAµFµν =

1

2
ϵρµνλFρµFνλ (3)

which connects the Hopf invariant with chiral anomaly. This Hopf term plays a role somewhat similar to the role
played by the Wess-Zumino interaction in connection with 3 + 1 dim. Skyrmion term.
In (3+1) dimensions, the 2D Hall surface is considered following Haldane [5] as a boundary surface of a 3D sphere,

having radius R in a radial (monopole) magnetic field B = ~S/eR2(> 0). This 2S = Nϕ is an integer which defines
the total number of magnetic flux through the surface. For the parent state ν = 1/m the total flux is S = 1

2m(N −1).
The field strength S in the first level hierarchy is

S(N,m± p) =
1

2
m(N − 1)± 1

2
(
N

p
+ 1)

which is formed when p (p= even integer) excitations are added in the parent state ν = 1
m . These show that the

filling factors for hierarchical state satisfy a slight complicated relation.

2S = Nϕ = ν−1N − S

For a ν = 1
m parent state this shift is simply S = 2(n− 1) +m having orbital spin s = n− 1+ m

2 that is associated
with the orbital angular momentum in cyclotron motion. In the effective theory, this introduction of shift leads to a
modification of the Lagrangian in equation (1). The appearance of shift in the hierarchies of FQHE is nontrivial [23].

L = 1/4π(KBϵ∂B + 2Aeϵ∂B + 2Csϵ∂B) (4)

where the second term is the electromagnetic coupling and the third one is the coupling to the curvature of space.
The quantization of Fermi field can be achieved assuming anisotropy in the internal space through the introduction

of direction vector as an internal variable at each space-time point [11]. The opposite orientations of the direction
vector correspond to particle and antiparticle. Incorporation of spinorial variables θ(θ̄) in the coordinate result the
enlargement of manifold from S2 to S3.This helps us to consider a relativistic quantum particle as an extended
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one, where the extension involves gauge degrees of freedom. As a result the position and momentum variables of a
quantized particle becomes

Qµ = i

(
∂

∂pµ
+Aµ

)
, Pµ = i

(
∂

∂qµ
+ Ãµ

)
(5)

where qµ and pµ are related to the position and momentum coordinates in the sharp point limit and Aµ(Ãµ) are
non-Abelian matrix valued gauge fields belonging to the group SL(2C). In fact the quantization of Hall particles is
the indication of Quantum Hall effect involving gauge theoretic extension of coordinate by Aµ ∈ SL(2C) which is

visualized through the field strength ˜Fµν .
The quasiparticles in hierarchy levels are formed when additional fluxes are attached with quantized particles.Apart

from the internal extension, the external strong magnetic field induces gauge extensions Bµ ∈ SL(2C) through the
gauge field Fµν .In the language of differential geometry these two gauges act as two fibres at each particle points of the
base space S2. The effective theory of the Hall fluid (Abelian) can be accurately presented if not only the two vortices
but also their interactions are taken into account. In presence of strong external magnetic field, the chiral symmetry
breaking of composite fermion associated with internal and external gauge fields Fµν and ˜Fµν are represented by

Fµν = ∂µBµ − ∂νBν + [Bµ, Bν ]

˜Fµν = ∂µAµ − ∂νAν + [Aµ, Aν ] (6)

The topological Lagrangian of Hall fluid in (3+1) dimension can be described by the added Chern-Simon terms in
the Lagrangian through the anomaly [11]

L = − θ

16π2
Tr∗FµνFµν −

θ′

16π2
Tr∗Fµν F̃µν −

θ′′

16π2
Tr∗F̃µν F̃µν (7)

Here every term corresponds to a total divergence of a topological quantity, known as Chern-Simons secondary
characteristics class defined by

Ωµe = − 1

16π2ϵµναβ
Tr[BνFαβ − 2/3(BνBαBβ)] (8)

Ω̃µ = − 1

16π2ϵµναβ
Tr[CνFαβ − 2/3(CνBαBβ)] (9)

Ωµi = − 1

16π2ϵµναβ
Tr[Cν F̃αβ − 2/3(CνCαCβ)] (10)

In particular the θ term in the Lagrangian leads to vortex line and the corresponding gauge field acts like a magnetic
field. Assuming a particular choice of coupling θ = θ′ = θ” in the Lagrangian the topological part of the action in
(3+1) dimension become

Wθ = 2(µe + µi + µ̃)θ (11)

where µe, µi and µ̃ are the corresponding magnetic charges which are connected with the respective charges through
the Dirac quantization condition and Pontryagin density.

2µ = q =

∫
∂µΩµd

4x (12)

It gives rise the topological phase of Berry on the parallel transport over a closed path of a Hall hierarchy state.

ϕB = πWθ = 2πµ̃effθ = 2π(µeff + µ̃)θ = 2π(µe + µi + µ̃)θ (13)

Here the first term µe is associated with Berry phase factor of Hall particle due to external magnetic field µe, the
second term µi gives rise to the inherent Berry phase factor associated with the chiral anomaly of a free electron (in
absence of an external magnetic field) and the third one effectively relates the coupling of the external field with the
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internal one which give rise the phase factor µ̃. This µeff actually visualizes the filling factor of the composite fermion
through the relation ν = n

2µeff
where n denotes the nth Landau level in which the particle resides. In fact this µeff

satisfies the Dirac quantization condition

e′µeff =
n

2
(14)

showing that each quasi particle in the nth Landau level having charge e′ behaves as a composite fermion. It will
behave as fermion in the ground state following the Dirac condition

ẽµ = ±1/2 (15)

that arises when

ẽ(µeff −
n± 1

2
) = ±1

2
(16)

This implies that (n ± 1)/2 is the magnetic strength µ of the added quanta whose removal makes the composite
fermion in the higher Landau levels to behave as fermion in the ground state. Here for µ = ±1/2,±3/2, ... the quanta
behave like fermion and µ = ±1,±2, .... it shows bosonic behavior. It has realized that this change of magnetic charge
as µ̃ can be visualized [11] through shift S by the relation

2µ̃ = S = 2µeff − (n± 1) =
n

ν
− (n± 1) (17)

where n = 1, 2, 3.. denotes the hierarchy levels. Our picture shows that a transport of composite particle in the Hall
fluid moving in a circular orbit will be quantized through its acquirance of the Berry’s topological phase.

ϕB = πθ(2µeff + S) (18)

Conceptually the appearance of this shift quantum number S, in the topological phase of quasi-particle is obvious,
since the coupling between the two gauges(that act as fibres) with the curvature is prominent during parallel
transport over a closed path. With this view we have studied [24] the role of shift in the relative AB type phase as
the composite fermion and the additional quanta encircles each other.

Composite fermion theory in FQHE and A-B type phase :

In the composite fermion theory of Quantum Hall effect the qubits are equivalent to the fluxes attached with the
charged particles. When an electron is attached with a magnetic flux, its statistics changes and it is transformed into
a boson.These bosons condense to form cluster which is coupled with the residual fermion or boson (composed of two
fermions). Indeed the residual boson or fermion will undergo a statistical interaction tied to a geometric Berry phase
effect that winds the phase of the particles as it encircles the vortices.Indeed as two vortices cannot be brought very
close to each other, there will be a hard core repulsion in the system which accounts for the incompressibility of the
Quantum Hall fluid.
These non-commuting fluxes have their own interesting Aharonov-Bohm interactions. As the quasi-particles encir-

cles another in their way of topological transport, the Aharonov-Bhom type phase and statistical phase are developed.
Following a generalization of Pauli exclusion principle, Haldane [25] pointed out that the quasi-particles carrying flux
ϕα and charge qβ orbiting around another object carrying flux ϕβ and charge qβ has the relative statistical phase θαβ

exp(iθαβ) = exp± iπ(gαβ + gβα) (19)

where gαβ = −qαϕβ .

With this view we have recently shown [26] that when two non-identical composite fermions residing in two consec-
utive Landau levels in FQHE encircle each other, the relative Aharonov-Bhom (AB) type phase is developed. As the
quasi-particles advance towards the edge of FQHE in a similar circular way,the developed current [24] should have a
connection with this AB type phase through Berry’s topological phase.
We assume the transfer of the composite particle from the inner edge in the nth Landau level having filling factor

νn picking up even integral (2m) of flux ν1 through the bulk of QH system and forming a new composite particle in
the (n+1)th Landau level of the outer edge. The filling factor and the associated flux of the effective particle becomes

νeff =
n+ 1

µeff
(20)
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which can be considered as

µeff = 2mµ1 + µn = 2m(
N − 1

2
) +

N − n2

2n
(21)

Here statistical interaction takes place between the composite particle of the inner edge and outer edge which is
responsible for propagation of current [24]. We further assume that path of the particles do not intersect each other.
Encircling one type of fluxes around another in the consecutive Landau level generate the relative AB type phase
developed by their fluxes and charges as

ϕs = exp± iπ
2
(qnµeff + qeffµn) (22)

In use of the Dirac quantization relation the charges of the quasiparticles are replaced by the Landau filling factor in
eq.(22)

ϕs = exp± iπ
2
(νnµeff + νeffµn) (23)

In hierarchies of FQHE the effective flux νeff in outer edge is equivalent to combined effect of even integral(2m) of
flux µ1 in bulk and transporting flux µn of inner edge

ϕs = exp± iπ
2
(
n

µn
(2mµ1 + µn) +

(n+ 1)µn
(2mµ1 + µn)

(24)

ϕs ∼= exp± iπ
2
[
n

2
(2m

µ1

µn
+ 1) +

n+ 1

2
(1− 2m

µ1

µn
)] (25)

ϕs ∼= exp± iπ
2
[(n+

1

2
)−m

µ1

µn
] (26)

This relative AB type phase factor has relationship with shift quantum number. It can be be commented from the
above equation that irrespective of µ1 and µn being fermionic or bosonic flux, the phase factor depends upon the
number of particles-N ,the Landau level-n, and the odd integer-m that is the inverse of parent filling factor ν = 1/m
by the following expression.

ϕs ∼= exp± iπ
2
[(n+

1

2
)− mn(N − 1)

(N − n2)
] (27)

Recently it has been found that fractional statistics play an important role in topological transformation in connection
with Quantum computation [27]. Also Kane [28] showed that statistical phase by combining AB effect can be used in
noise measurement. The result we find fully support these views. There is an intimate connection between AB phase
with Berry phase (BP). The BP for non-degenerate state is trivial. For degenerate state this BP becomes of matrix
valued. In the next section, we will discuss about the non-trivial BP in presence of disorder.

III. ORDERED AND DISORDERED BERRY PHASES

The relationship of Berry Phase (BP) with topological quantum number is independent of any approximation
scheme. In general BP is the solid angle subtended by a quantum particle driven by parameter that can be seen
by considering the two component nature of fermion represented by spherical harmonics Yl

m,µ. For half orbital and
spin angular momentum, i.e. for l = 1/2, |m| = |µ| = 1/2,the two component up-spinor structure | ↑⟩ of a quantized
spin-1/2 particle becomes [14]

| ↑⟩ =

(
u

v

)
=

(
Y1/2

1/2,1/2

Y1/2
−1/2,1/2

)
=

(
sin θ

2 exp i(ϕ− χ)/2

cos θ2 exp−i(ϕ+ χ)/2

)
(28)
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In the language of quantum computation,a spinor can be written by use of quantum gates and an arbitrary superpo-
sition of elementary qubits |0⟩ and |1⟩

| ↑⟩ =
(
sin

θ

2
eiϕ|0⟩+ cos

θ

2
|1⟩

)
e−i/2(ϕ+χ) (29)

Similar to the coherent state approach [28], the effective lagrangian L↑
eff of these states thus becomes

L↑
eff =<↑ |∇t| ↑>= − i

2
(χ̇+ ϕ̇ cos θ) (30)

All the angular parameters being time dependent, ∇t is the derivative with respect to time.
The related geometrical phase of a quantized spinor could be obtained from the action integral over a closed path

[28].

γ↑ = i

∫
L↑
effdt (31)

= i

∮
A↑(λ)dλ (32)

=
1

2
(

∮
dχ+ cos θ

∮
dϕ) (33)

= π(1 + cos θ) (34)

This shows that for quantized spinor the Berry Phase is a solid angle subtended about the quantization axis. In a
similar manner the parallel transport of this down-spinor over the closed path will generate the Berry phase by the
solid angle of opposite chirality.

γ↓ = −π(1 + cos θ) (35)

The fermionic or the antifermionic nature of the two spinors (up/down) can be identified by the maximum and
minimum values of topological phases γ↑/↓ = ±π, 0 for the respective θ values π/2 and π. These findings is similar
with that of Hatsugai [29] who pointed out that the frustrated spin systems can be well classified by the respective
quantized Berry phase through 0 and π as the local topological order.
In absence of local frustration the parallel transport of the quantized spinors develops the Berry phase visualized

by the solid angles as in eq.(34) or (35) where the final direction of spinor merges with the initial completing a closed
path. But in frustrated spin system,the situation is different where the spinor does not trace a closed path. Thus
the different kind of Berry connection developed in frustrated spin system will be investigated further based on the
following situation.
If an electron coupled to a spin hops from site i to site j then Ohgushi,Murakami and Nagaosa [30] pointed out that

the spin wave function is effectively

|Ci⟩ = t

(
eibi cos

θi
2
, ei(bi+ϕi) sin

θi
2

)
(36)

Here t denotes the hopping integral that acts as the coupling between the neighboring spins. The overall phase bi
visualizing the gauge degree of freedom does not appear as physical quantity. Moreover, following Anderson’s analysis
[31] the effective transfer integral tij is given by

tij = t⟨Ci|Cj⟩

= tei(bj−bi)
(
cos

θi
2
cos

θj
2

+ ei(ϕj−ϕi) sin
θi
2
sin

θj
2

)
= teiaij cos

θij
2

(37)

where θij is the intermediate angle between the two spin vectors S⃗i and S⃗j . The phase aij is the vector potential,
generated by the spins, measuring the spin chirality in the context of quantum spin liquid where the spins fluctuate
quantum mechanically.
Motivated by the above ideas, we will now proceed to find out the other kind of Berry connection developed by a

quantized spinor in eq.(28) on a frustrated sphere. A frustrated sphere can be realized as an extended sphere with
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three parameters θ,ϕ and χ where each point on the surface is occupied by quantized spinor or local disorder. These
disorders are responsible for producing randomness in the spin degrees of freedom. As the quantized up-spinor hops
from the site i to the site j, the transfer integral tij becomes

⟨↑i|↑j⟩ = ei/2(ϕi−ϕj).ei/2(χi−χj)(
cos

θi
2
cos

θj
2

+ ei(ϕj−ϕi) sin
θi
2
sin

θj
2

)
(38)

which is product of the intermediate angle θij and difference of inclination of helicity of the quantized spinor as it
moves from site i to j in frustrated spin glass.

⟨↑i|↑j⟩ = ei
(ϕi−ϕj)

2 ei
(χi−χj)

2 cos
θij
2

(39)

In 3D anisotropic space, µ, the measure of chiral anomaly [32] (non-conservation of chiral current) can take the values
±1/2 for which the helicity dependent Berry phase is ΦB = e2iπµ = e±iπ. As a scalar particle traverses a closed path
with one flux quantum enclosed, the acquired phase eiπ suggests the system as a fermion. In a frustrated space we
consider the helicity dependent Berry phase of a two-component spinor (µ = 1/2) hopping from site i to site j (i ̸= j)
as.

ei
(χi−χj)

2 = ei
δχ
2 = ei

aij
2

As a result, the equation (20) becomes

⟨↑i|↑j⟩ = ei/2(ϕi−ϕj+aij) cos
θij
2

(40)

The uses of local gauge transformation

aij −→ aij + ϕi − ϕj (41)

enable us to modify the transfer integral for the quantized up-spinor by

⟨↑i|↑j⟩ = eiaij/2 cos
θij
2

(42)

It has found [30] that for nearest-neighbor spin coupling t = 1, the total energy when optimized the above transfer
integral eq.(18) for quantized up-spinor becomes similar with that of Anderson [13] and Ohgushi,Murakami and
Nagaosa[31] as seen in equation (37). This comparison is justified if we identify the gauge degrees of freedom of the
spinor at ith site by bi = −(ϕi + χi)/2, and then the vector potential is developed from spin chirality aij = (bi − bj)
to measure the difference of inclination of the transported spinor at the two different sites.
In presence of local frustration,we realize that the quantized spinor could not trace a closed curve due to randomness

of spin degree of freedom. This results the shift of the final point from the initial developing a different kind of Berry
connection. The required Berry connection on the frustrated system has now been calculated considering the constancy
of parameters θ and χ (having negligible variations) during cyclic motion of quantized spinor. In fact, the quantization
fixes the helicity of spinor by χ and the respective initial and final site i and j can be considered on the circular arc
in any hemi-sphere of constant θ but of different ϕ values. Hence,during in our model only the derivative of ϕ has
been considered to evaluate the frustrated Berry connection. Thus

⟨↑i |∇ϕ| ↑j⟩ =
i

2
ei/2(ϕi−ϕj).ei/2(χi−χj).(

sin
θi
2
sin

θj
2
ei(ϕj−ϕi) − cos

θi
2
cos

θj
2

)
(43)

using eq.(38)

⟨↑i |∇ϕ| ↑j⟩ =
i

2
eiaij/2.(

cos
θij
2

− 2 cos
θi
2
cos

θj
2

)
(44)
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It is seen that the above frustrated connections measure the vector potential aij , along with the intermediate angle
θij where the randomness of spin orientations plays the crucial role without changing the polarity of spinor as it hops
from the site i to site j. The intermediate angle θij plays the key role to visualize the frustration in Berry connection.
The topological phase for frustrated spinor can be written using Berry connection integrated over 0 ≤ ϕ ≤ 2π only as
follows

Γ↑
F = i

∮
⟨↑i |∇ϕ| ↑j⟩.dϕ (45)

The respective Berry phases [20] for both up and down spinors in frustrated spin glass system becomes

Γ↑
F = πeiaij/2

(
2 cos

θi
2
cos

θj
2

− cos
θij
2

)
(46)

and

Γ↓
F = −πe−iaij/2

(
2 cos

θi
2
cos

θj
2

− cos
θij
2

)
(47)

These phases depend not only on the individual angles θi and θj of the spinors but also mainly on the intermediate
angle θij and the gauge aij due to difference of spin directions.
In absence of frustration, no randomness of spin degree of freedom is seen indicating aij = 0. Moreover if the

intermediate angle θij is π, no spin conflict persist resulting cos
θij
2 = 0. In this situation ideally the parallel transport

of spin vectors takes place. As a result the final site of the spinor coincide with the initial leading to choose χi = χj ,
ϕi = ϕj and θi = θj . The well known Berry phases

γ↑ = π(1 + cos θi) (48)

γ↓ = −π(1 + cos θi)

are recovered in the form of usual solid angles for the respective up and down spinors. This shows that the physics of

frustrated spin system becomes more transparent through Berry phase. In a frustrated system, cos
θij
2 = ±1, act as a

signature of two chirality that may behave also as an order parameter in the system. It is important to highlight that
even in disordered quantum system the new kind of Berry phase could be transformed to the conventional ordered
phase(solid angle) at a special condition [33]. This above physics of frustration is very nicely applied in Quantum
Hall system where disorder plays an important role for localization. In the next section it could be seen how this
frustrated Berry phase is responsible in appearance of matrix form of non-abelian BP in Quantum Hall effect.

IV. HALL QUBIT FORMATION THROUGH BERRY PHASE IN FRUSTRATED INTEGER
QUANTUM HALL STATE

In the Quantum Hall system the external magnetic field in presence of disorder introduces a frustration. We have
considered a two-dimensional frustrated electron gas of N particles on the surface of a three dimensional sphere of large
radius R in a strong radial (monopole) magnetic field. In such a 3D anisotropic space with the spirit of Haldane [5] we
can construct the N-particle wave-function of Hall excitations at the occupations ν = 1/m, m being an odd integer.
Evidently for odd(even) m we will have respective fermionic (bosonic) state. Following Haldane this m = Jij = Ji+Jj
is the two particle angular momentum equivalent to m = µi + µj = 2µ (when i = j) when the angular momentum
in the anisotropic space is given by J = rxp− µr. From the description of a qubit as two component up spinor [11]
|↑⟩ =

(
u
v

)
, where u ,v are spherical harmonics Yl

m,µ we can construct the N particles wave function of Hall states for
half orbital angular momentum, l = 1/2, |m| = |µ| = 1/2.

ΨN↑
(m) =

∏
(uivj − ujvi)

m (49)

The Hall state with opposite polarization can be constructed similarly by using the down spinor |↓⟩ =
(
ṽ
ũ

)
ΨN↓

(m) =
∏

(ũiṽj − ũj ṽi)
m (50)

Here the two states ΨN↑
(m) and ΨN↓

(m) belong to the same parent filling factor but with opposite polarization of the
spinors.
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It could be pointed out that as Hall effect is a topological transportation,the states could be realized to form through
Berry phase by spin echo method. In the construction of two qubit through rotation of one qubit (spin 1/2) in the
vicinity of another Berry phase plays the key role where dynamical phase eliminate. Incorporating the spin-echo [33]
for half period we find the antisymmetric Bell’s state after one cycle (t = τ),

|Ψ−(t = τ)⟩ = 1√
2
(eiγ↑ |↑⟩1 ⊗ |↓⟩2 − e−iγ↑ |↓⟩1 ⊗ |↑⟩2) (51)

and symmetric state becomes

|Ψ+(t = τ)⟩ = 1√
2
(e−iγ↑ |↑⟩1 ⊗ |↓⟩2 + eiγ↑ |↓⟩1 ⊗ |↑⟩2) (52)

where γ↓ = −γ↑ = −γ. It may be noted that for |µ↑| = 1
2 (1− cosθ).

Splitting up these above two eqs.(51) and (52) into the combination of initial symmetric and antisymmetric states
we have after rearranging

|Ψ+⟩τ = cos γ |Ψ+⟩0 − i sin γ |Ψ−⟩0 (53)

|Ψ−⟩τ = i sin γ |Ψ+⟩0 + cos γ |Ψ−⟩0 (54)

the matrix Berry phase-Σ as the doublet rotated from t = 0 to t = τ .(
|Ψ+⟩
|Ψ−⟩

)
τ

= Σ

(
|Ψ+⟩
|Ψ−⟩

)
0

(55)

Σ =

(
cos γ − i sin γ
i sin γ cos γ

)
= cos 2γ (56)

This non-abelian matrix Berry phase Σ is developed [15] from the abelian Berry phase γ. For γ = 0 there is symmetric
rotation of states, but for γ = π the return is antisymmetric as the values of Σ=I and -I (where I=identity matrix)
respectively.
The above states are grouped into a family depending on the value of m. With m = 3 the states are the same

family of the Laughlin ν = 1/3 state [2]. It seems that for LLL ν = 1, IQHE state Φ1(z)

Φ1(z) = (uivj − ujvi) (57)

is the basic building block for constructing any other IQHE/FQHE state. The lowest level Hall state Φ1(z) is identified
as Hall qubit which is two-qubit singlet state formed by a pair of one qubit states where one qubit is rotating in vicinity
of other with Berry phase. In the light of Jain [7] ”FQHE of fermions is the IQHE of composite fermions” we may
point out that any FQHE state can be expressed in terms of Hall qubit, the IQHE state of LLL.
There is a deep analogy between FQHE and superfluidity [7]. The ground state of anti-ferromagnetic Heisenberg

model on a lattice introduce frustration giving rise to the resonating valence bond(RVB) states corresponding spin
singlets where two nearest-neighbor bonds are allowed to resonate among themselves. It is suggested that RVB states
[13], [34] is a basis of fault tolerant topological quantum computation. Since these spin singlet states forming a RVB
gas is equivalent to fractional quantum Hall fluid, its description through quantum computation will be of ample
interest.
This resonating valence bond(RVB) where two nearest-neighbour bonds are allowed to resonate among themselves

has equivalence with entangled state of two one-qubit. The antisymmetric Hall state Φ1(z) for ν = 1 is formed [15]
as one spinor at ith site rotating with Berry phase γ = ±iπ in the vicinity of another at jth site captures the image
of spin echo

|Φ1(z)⟩ =
1√
2
(|↑⟩1 |↓⟩1)

(
0 − e−iπ

eiπ 0

)(
|↑⟩2
|↓⟩2

)
(58)

= (|↑⟩1 |↓⟩1)
(

0 1
−1 0

)(
|↑⟩2
|↓⟩2

)
(59)

=
1√
2
(|↑⟩1 |↓⟩2 − |↓⟩1 |↑⟩2) (60)

= |Ψ−⟩ (61)
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Due to symmetry, the singlet state can be written on any basis with the same form. We can rotate the spin vector
by an arbitrary angle θ with the following transformation.(

|↑⟩
|↓⟩

)
=

(
sin θeiϕ cos θ

− cos θ sin θe−iϕ

)(
|0⟩
|1⟩

)
(62)

The Quantum Hall systems are so highly frustrated that the ground state Φ1(z) is an extremely entangled state
visualized by the formation of antisymmetric singlet state between a pair of i, jth spinors in the Landau filling factor
(ν = 1).

Φ1(z) =

(
ui uj
vi vj

)
= (uivj − ujvi)

= (ui vi)

(
0 1
−1 0

)(
uj
vj

)
(63)

We identify this two qubit singlet state as Hall qubit constructed from the up-spinor shown in the previous section

Φ1(z) = ⟨↑i|
(

0 1
−1 0

)
|↑j⟩ = ⟨0|Ui†

(
0 1
−1 0

)
Uj |0⟩ (64)

The down spinor can construct the opposite polarization of Hall qubit

Φ1(z̃) = (ũiṽj − ũj ṽi) (65)

Now these two Hall qubits eq.(63) and (65) of two opposite polarizations representing the state of same lowest Lan-
dau level ν = m = 1 will automatically generate two respective non-abelian Berry connections. The Hall connection
for up spinor becomes

B↑ = Φ1(z)
∗dΦ1(z) =

(
ui

∗ vi
∗

uj
∗ vj

∗

)(
dui duj
dvi dvj

)
(66)

and similarly for down-spinor

B̃↓ = Φ1(z̃)
∗dΦ1(z̃) =

(
ũi

∗ ṽi
∗

ũj
∗ ṽj

∗

)(
dũi dũj
dṽi dṽj

)
(67)

The non-abelian nature of the connection or Berry phase on the Hall surface for the lowest Landau level LLL (ν = 1)
will remain if i ̸= j.

B↑ =

(
(u∗i dui + v∗i dvi) (u∗i duj + v∗i dvj)
(u∗jdui + v∗j dvi) (u∗i dui + v∗i dvi)

)
=

(
µi µij
µji µj

)
(68)

This is visualizing the spin conflict during parallel transport leading to matrix Berry phase. In the light of Hwang
et.al [35] our realization includes that in Quantum Hall effect this non-abelian matrix Berry phase is responsible for
the charge flow by pumping. In frustrated QHE system the matrix Berry phase becomes

γH↑ =

(
γi γij
γji γj

)
(69)

γi and γj are the BPs for the ith and jth spinor as seen in eq.(34) and the off-diagonal BP γij arises due to local

frustration in the spin system that is equivalent to Γ↑
F of eqn.(46). Over a closed period t = τ the QHE state Φ1(z)

at ν = 1 filling factor will acquire the matrix Berry phase.

⟨Φ1(z)|τ = eiγ
H

↑ ⟨Φ1(z)|0 (70)

Berry connection gets modified as the quantum state differ after one rotation. Usually when any state changes by

|ψ′⟩ = |ψ⟩ eiΩ(c)
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the corresponding changed gauge becomes

Aψ
′ = Aψ + idΩ(c)

provided ⟨ψ|ψ⟩ = 1. We have pointed out earlier [15] that each Quantum Hall state for a particular filling factor has
its distinct Berry phase. Hence BP is constant for a filling factor. The rotation could shift the BP from ground to
excited level.It could be noted here that the antisymmetric nature of FQHE states would be visualized through the
rotation of singlet states. The rotation of Hall qubit by ’n’ number of turns will be

⟨Φ1(z)|nτ = einγ
H

↑⟨Φ1(z)|n0 (71)

where n = 1, 2, 3.. are the natural numbers associated with the number of rotations of the singlet states. This
automatically imposes the following constraint in the topological phase

einγ
H

= eimπ = −1, (72)

for which the Hall qubit follows

for ⟨Φ1(z)|nτ = −⟨Φ1(z)|0

To maintain the antisymmetric nature of wave functionm = 1, 3, 5.. need to be odd numbers. Any number of rotations
of Hall qubit will lead to the matrix Berry phase as odd multiple of π so that every state remains antisymmetric. It
seems that BP act as a local order parameter of states in QHE system.

⟨Φ1(z)|mπ/γτ = eimπ⟨Φ1(z)|mπ/γ0 (73)

In extension of our previous work [10] that the Berry phase for ν = 1/m state is γ = mπθ = 2πµθ where θ is a
coupling constant. Each rotation of Hall qubit results

⟨Φ1(z)|τ = eimπθ⟨Φ1(z)|0 (74)

The above Physics makes the experimental observation of parent state in FQHE at m = odd(3, 5, 7) filling factors
more transparent. It also shows that the topological phase is responsible for controlling the statistics of the Hall state.
In absence of frustration (disorder), the Berry phase is a diagonal matrix for γij being zero.

γH↑ = π(1− cos θi)

(
1 0
0 1

)
(75)

The non-abelian matrix Berry phase in Quantum Hall effect is originated due to the frustration offered by the magnetic
field and the disorder of spins. In the absence of local frustration (latter) this complexity of connection will be removed.
We would like to mention that spin echo between two single qubit has the equivalence of RVB state in FQHE and
topological quantum computation with BP is responsible for the formation of higher states considering the Hall qubit
at ν = 1 as a building block of any QHE state.

V. HALL-QUBIT FORMATION IN FQHE THROUGH AHARONOV-BOHM PHASE

Two non-identical composite fermions residing in two consecutive Landau levels in FQHE as encircle each other,
the relative Aharonov-Bhom (AB) type phase is developed. As the quasi-particles advance towards the edge of FQHE
in a similar circular way, the developed current [36] should have a connection with this AB type phase in topological
transportation.
The A-B interactions are the key source of forming two qubit Hall states identified as Hall qubit. Hence movement

of Hall qubits would develop the A-B phase. In the physics of spin echo instead of Berry phase the incorporation of
Aharonov-Bhom phase would be more appropriate as the rotation of qubits are equivalent to the rotation of fluxes
around charges. If eiϕs be the Aharonov-Bohm phase between the two qubits for half period,incorporating spin-echo
we find the antisymmetric Bell’s state different from eq.(51) and (52)

|Ψ−(t = τ)⟩ = 1√
2
(eiϕs |↑⟩1 ⊗ |↓⟩2 − e−iϕs |↓⟩1 ⊗ |↑⟩2) (76)
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similar consideration for symmetric states

|Ψ+(t = τ)⟩ = 1√
2
(e−iϕs |↑⟩1 ⊗ |↓⟩2 + eiϕs |↓⟩1 ⊗ |↑⟩2) (77)

Splitting up these states and rearranging the symmetric and antisymmetric parts we have the doublet acquiring the
matrix form of Aharonov-Bhom phase Υ as rotated from t = 0 to t = τ .(

|Ψ+⟩
|Ψ−⟩

)
τ

= Υ

(
|Ψ+⟩
|Ψ−⟩

)
0

(78)

where

Υ =

(
cosϕs − i sinϕs
i sinϕs cosϕs

)
= cos 2ϕs (79)

This topological matrix phase Υ is developed from the Aharonov-Bohm phase ϕs as one qubit rotates around another.
The qubits in QHE are quantized spinor having flux attached with charge. Their entanglement is equivalent to spin
type echo where the topological phase dominates due to Aharonov-Bohm oscillation between them. This compel to
change the Berry phase of the singlet state as in eq.(76) by the relative A-B type phase ϕs.

|Φ1(z)⟩τ = eiϕs |Φ1(z)⟩0 (80)

This Hall qubit can be visualized in terms of entanglement of two oscillating qubits .

|Φ1(z)⟩ =
1√
2
(|↑⟩1 |↓⟩1)

(
0 − e−iϕs

eiϕs 0

)(
|↑⟩2
|↓⟩2

)
(81)

To form the singlet state between the qubits under A-B interactions in the spin echo method, the essential condition
for antisymmetric QHE states are visualized by ±eiϕs = ±eiπ = ±1.
In the formation of Hall qubit through the entangling of qubits in the different Landau level the A-B phase plays

the key role in the spin type echo method. If the rotating qubits are in the same Landau level, the A-B phase changes
to statistical phase. Considering the interaction [37] between two identical qubits in the same nth Landau level for
the composite particles filling factor ν = n

2µeff
the statistical phase becomes

ϕs = exp± i
nπ

2
(82)

where for n = 2, 4, 6... the change of statistics will be fermionic visualized by the phase ϕs = exp ± iπ.On the other
hand for n = 1, 3, 5.. the statistics will be bosonic ϕs = exp± iπ/2. It may be noted that for fractional filling factors
the final statistics will be fermionic through proper combinations. With this view, the entanglement of two one qubits
in the same Landau Level, the Hall qubit |Φ1(z)⟩ will be formed when the exchange phase is ±iπ

|Φ1(z)⟩ =
1√
2
(|↑⟩1 |↓⟩1)

(
0 − e−iπ

eiπ 0

)(
|↑⟩2
|↓⟩2

)
(83)

Whenever the interaction takes place between dissimilar qubits in different Landau level the rotation of one against
another develops the Aharonov-Bhom type phase that does not express their statistics. We assumed the transfer of
the composite particle19 from the inner edge in the nth Landau level having filling factor νn picking up even integral
(2m) of flux ν1 through the bulk of QH system and forming a new composite particle in the (n + 1)th Landau level
in the outer edge. The filling factor of the effective particle becomes νeff = n+1

µeff
. The monopole strength µeff of the

state Φ1
2mΦn can be considered as

µeff = 2mµ1 + µn. (84)

Encircling of the composite particle in the inner edge having flux µn with charge qn around the composite particle in
the outer edge having corresponding flux µeff would develop a relative AB type phase

ϕs = exp± iπ

2
(qnµeff + qeffµn) (85)
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In more simplified way it becomes

ϕs ∼= exp± iπ

2
[(n+

1

2
)−m

µ1

µn
] (86)

Since the concurrence C = 1 indicate the maximum entanglement and for disentanglement the value of minimum
concurrence is C = 0, we can establish a relationship between the fluxes of the entangling qubits on the Hall surface
[16].The maximum entanglement between the two quasi-particle results a relation between the respective two fluxes
µ1 and µn in terms of parent filling factor m and Landau level n.

exp± iπ
2
[(n+

1

2
)−m

µ1

µn
] = exp±iπ (87)

This gives a ratio between the entangling fluxes µn and µ1 in order to form the singlet pairs through AB oscillations
in Quantum Hall effect.

µn =
2m

2n− 3
µ1 (88)

It may be noted that for maximum entanglement µ1 = 1 results

µn =
2m

2n− 3

and for minimum entanglement both µ1 and µn becomes zero.
The physics behind the formation of higher Hall states take place through the entanglement of Hall qubits |Φ(z)1 >

in the lowest landau level. Here the A-B phase or statistical phase plays the key role in the process of spin echo with
the essential condition ±eiϕs = ±eiπ = ±1. The outcome of entanglement of two Hall qubits is

|α(z) >=< Φ1(z)|
(
0 − e−iπ

eiπ 0

)
|Φ1(z) >=

(
0 Φ1(z)
−Φ1(z) 0

)
(89)

where Φ1(z) = (uivj − viuj). On the similar manner we realize that the entanglement of two |α(z) > gives rise the
state formed by the square of Hall qubits.

|γ(z) >=< α(z)|
(

0 1
−1 0

)
|α(z) >=

(
0 Φ1

2(z)
−Φ1

2(z) 0

)
(90)

In order to maintain the antisymmetric nature of the Hall state the power of the Hall qubit should be odd. This is
possible only when two asymmetric Hall qubits ( one even power with another odd power) entangle under topological
interactions

< γ(z)|
(

0 1
−1 0

)
|α(z) >=

(
0 Φ1

3(z)
−Φ1

3(z) 0

)
(91)

forming a Hall state in the parent Landau filling factor ν = m = odd.
We like to conclude mentioning that the hierarchical FQHE states are formed through the process of quantum

teleportation. If there are three entities defined by 1,2, and 3, then transportation of 1 to 3 through 2 will be

|Ψ >123 = |Φ1 > |Ψ23 > (92)

=
1

2
(1 + σ1.σ3)|Ψ12 > |Φ3 > (93)

Similar reflection of quantum teleportation [16] in FQHE motivate us to write

Ψν
m = Φ1

2mΦn = Φ1
2mΦ1

1
n =

1

2
(1 + σ1.σ3)|Φ1

1
nΦ1

2m (94)

a hierarchical FQHE state whose extensive study through the entanglement of Hall qubits maintaining the antisym-
metric nature of the exchange phase is to be done in future.
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VI. DISCUSSION

The quantized spinor residing on the surface of frustrated sphere is celebrating a new kind of Berry phase. The
un-frustrated Berry phase, the usual solid angle may be recovered under special condition. This frustrated Berry
phase could be the key source of resolving various physical problems in disorder system. The Hall state for the lowest
Landau level at ν = 1 is highly frustrated. They are the singlet states identified as the Hall qubit, the building block
of other higher IQHE/FQHE states at different filling factors. Since these spin singlet states forming a RVB gas is
equivalent to fractional quantum Hall fluid, the description of background Physics through quantum computation
will be of ample interest. In this paper we have studied the Physics behind the Hall qubit formed by entanglement
of two qubits where one qubit is rotating in the field of the other with Berry phase or Aharonov-Bohm phase in the
respective lowest and Higher Hall states. Image of spin echo has been reflected in the formation of Hall qubit. These
states have matrix Berry phase which are responsible for pumped charge to flow and acts as a local order parameter
of singlet states. Further we pointed out that the antisymmetric nature of ν = 1/m FQHE states depend on their
acquired Berry phase. With the condition of concurrence for maximum entanglement, a proper ratio between the
fluxes of the entangling qubits has been evaluated. At the end, it has been mentioned that the states in hierarchies of
FQHE can be studied in the light of quantum teleportation whose extensive study will be of new interest in future.
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